Ellipsis in ‘DP be CP’ constructions and the syntax of embedded fragments

Andrew Weir, NTNU Norwegian University of Science and Technology

Some NPs with ‘intentional/propositional content’, e.g. idea, rumor, story etc., can participate in ‘DP be CP’ structures like (1), see e.g. Potts 2002. In such cases, the CP can be replaced by a fragment (2), a fact which to my knowledge has not previously been noted in the literature.

1) The {idea/rumor/story/suggestion} is that John is corrupt.
2) Who should he write to? – The original idea was (to) Mary, but she’s on holiday, so he should write to John. (= The original idea was that he should write to Mary)

The availability of pied-piping (2), plus binding connectivity (3), suggest that clausal structure is covertly present in such structures (cf. also den Dikken et al. 2000 on pseudoclefts)

3) Who is John going to promote? – The rumor is himself/*him.

(cf. The rumor is that John is going to promote himself/*him)

If the CP modifies the intentional NP, however, fragments are strikingly ungrammatical.

4) The [NP idea [CP that John should write to MARY]] seems like a bad one.
   a. I prefer the idea that John should write to SUE.
   b. *I prefer the idea (that) SUE. (i.e. the idea that John should write to Sue)

It’s not clear that extant accounts of where clausal ellipsis is licit (e.g. Merchant 2001, van Craenenbroeck and Lipták 2006, a.o.) capture the contrast between (2) and (4b). I propose an analysis for these cases, which I argue will also help us understand other cases of embedded fragments such as (5), discussed by Temmerman 2013 (for Dutch) and Weir 2014 (for English).

5) What did John eat? – I {think/hope/suspect} salad. (i.e. I think that John ate salad)

What can CPs denote? We start by understanding what CPs denote in ‘DP be CP’ and ‘NP CP’ structures. Clauses must be able to denote propositions of the familiar type, <st>. But Kratzer 2006, 2013, Moulton 2015, note that CPs must also be able to restrict the denotations of nouns like idea, as (4). (These CPs are not arguments; as Moulton points out, nouns like idea and story do not take arguments. Despite semantic appearance, they also do not have the syntax of relative clauses, pace e.g. Kayne 2009.) These authors propose that (one particular flavor of) left-peripheral head, call it C_L (for ‘logophoric’, after Kratzer 2006), can transform propositions into properties of (abstract) individuals with propositional/intentional content, <e,st>.

6) \([C_L] = \lambda p. \lambda x_p. [\text{CONT}(x)(w) = p]\) (where \(x_p\) is a variable over individuals with propositional content, and \(\text{CONT}\) is a function from such individuals to their content)

7) \([\text{CP} C_L \text{ that John is corrupt}] = \lambda x_p. [\text{CONT}(x)(w) = \lambda w'. John is corrupt in w']\)

Denotations like (7) allow the composition of ‘NP CP’ examples like (4) to proceed unproblematically via Predicate Modification (Kratzer 2006, Moulton 2015)

8) \([\text{NP rumor} [\text{CP} C_L \text{ that John is corrupt}] = \lambda x_p. \text{rumor}(x)(w) & [\text{CONT}(x)(w) = \lambda w'. John is corrupt in w']\]

Constructions like (1), however, are equative (Potts 2002), i.e. DP = CP. CPs like the rumor appear to denote (abstract) individuals (Moulton 2015); so assuming that type-equivalence is required in equative constructions (Heycock & Kroch 1999), the CP therefore also needs to be shifted into the type of individuals <e>. I propose (departing from Potts’ implementation, and also from Kratzer and Moulton) that this is done by a choice-functional operator applied to clauses like (7) – and that this operator also inhabits a left-peripheral complementizer position which takes a CP such as (7) as complement. I label this as C_D – ‘D’ to imply its determiner-like semantics. (Note that the category label remains that of a C rather than a D (clausal rather than nominal); as Moulton 2015 notes, we do not want to neutralize the syntactic/c-selectional DP/CP distinction, cf. e.g. discussion in Kastner 2015.)

9) \([C_D] = \lambda p. \text{se CP}, f(P)\) where \(f\) picks an individual in the domain of \(P\)

10) \([C_D] = \lambda x_p. [\text{CONT}(x)(w) = \lambda w'. John is corrupt in w']\)

11) \([\text{DP the rumor} \in [C_D [ C_L \text{ that John is corrupt}]] = \{x. \text{rumor}(x)(w) = \lambda x_p. [\text{CONT}(x)(w) = \lambda w'. John is corrupt in w']\}\)

(i.e. the rumor is an entity with the intentional content that John is corrupt)
**The relevance for clausal ellipsis.** I propose that the difference between (2) and (4b) is because $C_D$ is a licensor of ellipsis, while $C_L$ is not. In Merchant 2001, 2004’s terms, only $C_D$ bears the [E]-feature which attracts a fragment to its Spec and licenses ellipsis of its complement.

(12) the idea is [to John] $C_D [C_L$, that he should write t]

(13) the [$P$ idea [ $C_L$, that he should write to John]] (no $C_D$, so ellipsis not possible)

This finds a parallel with Weir 2014’s treatment of embedded fragments of the type in (5). In many languages (e.g. Dutch, Barbiers 2000; Spanish, de Cuba & Macdonald 2013; English, Weir 2014), this possibility is restricted only to bridge verbs. Non-bridge verbs, as in (14), do not allow fragment embedding of the type shown in (5).

(14) I {found out/??regret/??discovered/#know/#am surprised} salad.

Following Iatridou & Kroch 1992, McCloskey 2006 a.m.o., Weir 2014 argues that the complements of bridge verbs (but not non-bridge verbs) have a double-complementizer structure (‘recursive CP’). Weir argues that the higher of the two complementizers bears the [E]-feature. The complement of non-bridge verbs lacks this higher $C$ and so lacks [E] (and so does not allow ellipsis). In our terms, we can understand this higher $C$ position as the $C_D$ head:

(15) I believe/was told/hear/think/suspect [ $C_D$, that John ate salad]]

This is consistent with the proposal in Kratzer 2006, Moutlen 2015 that verbs like believe s-select for intentional entities, not propositions. If, however, verbs like discover do not s-select for intentional entities, they will not select a clause headed by $C_D$. In support of this, note that (16b) (in contrast to (16a)) does not relate to the intentional content of the rumor: (16b) only means roughly ‘I discovered/regret the rumor exists’ (cf. discussion in Uegaki 2015).

(16) a. I believe/was told/heard regret [ $C_D$, that John ate salad]]

The failure of ellipsis in cases like (14) is therefore explained by the lack of $C_D$:

(17) I found out/discovered/know [ $C_D$, that John ate salad] (no $C_D$, so ellipsis not possible)

**Extension to sluicing.** It is perhaps surprising that those verbs in (14) which embed wh-questions do allow clausal ellipsis in sluicing, even though fragments are ruled out.

(18) John ate something, and I found out/discovered/know what John ate.

The contrast between (14) and (18) can, I argue, receive an explanation on the current account. I propose, following Weir 2014, that when these verbs embed questions, they also require the mediation of a ‘high’ left-peripheral head. If the questions denote Hamblin sets of propositions, then these need to be shifted into the single proposition which is the true answer, by means of an ANSW operator such as (20) (Heim 1994, Dayal 1996). This operator also bears [E], licensing the movement of the wh-word to its Spec and ellipsis of its complement.

(19) $\llbracket$ what $Q$ John ate $t$ $\rrbracket^* = \{ \lambda w'$. John ate salad in $w'$, $\lambda w'$ John ate cake in $w'$, $\ldots \}$

(20) $\llbracket$ANSW$\rrbracket^* = \lambda q_{\text{set,}D}$, the maximal $p$ such that $p \in q$ & $p(w) = 1$

(21) $\llbracket$ANSW what $Q$ John ate$\rrbracket^* = \lambda w'$. John ate salad in $w'$ (i.e. the true answer in $w$)

(22) I found out [what ANSW$\llbracket$ $Q$, John ate $t$ $\rrbracket$] (= I found out that John ate salad)

**Why these left-peripheral heads?** Weir 2014 argued that ‘high’ left-peripheral heads license clausal ellipsis, but gave no deeper reason for why this should be the case. However, on the present analysis, ANSW and $C_D$ form a natural class that has independently been argued to be relevant for ellipsis licensing — they are both quantificational; they both take a set and return a member of that set, i.e. they are of type $\langle \sigma$, $\sigma \rangle$. We may then be able to return to a variant of the picture painted by Lobeck 1995 concerning the licensing of ellipsis: that certain features, in particular quantificational force or partitivity, are the crucial determinants of whether a head can license ellipsis of its complement. Based on this, I also speculate about the licensing of clausal ellipsis in root clauses. I propose that the left-peripheral head that licenses ellipsis in root clauses may also be an element with determiner-like semantics: one which takes a proposition and returns a speech act (cf. Krifka 2001, 2012, McCloskey 2006).